Mass Defect, Binding Energy and Binding Energy per nucleon
Binding Energy:
Where
$\Delta m \rightarrow$ Mass Defect
$P \rightarrow$ Number of Proton
$N \rightarrow$ Number of Neutron
$m_{actual} \rightarrow$ Actual mass of nucleus
$m_{P} \rightarrow$ Mass of a Proton
$m_{N} \rightarrow$ Mass of a Neutron
We know that
$Z=P=e \\ N=A-Z \qquad (2)$
Where
$Z \rightarrow $ Atomic Number
$A \rightarrow $ Atomic Mass Number
$ e \rightarrow $ Number of Electrons
From above two equation $(1)$ and equation $(2)$
$\Delta m = \left [ Z \times m_{P} + \left ( A-Z \right) \times m_{N} \right] - m_{actual} \qquad (1)$
Binding Energy:
Where $B.E.\rightarrow$ Binding Energy
$B.E= \Delta m (in \: a.m.u.) \times 931.5 \: MeV$
Where $1 \: a.m.u. = 1.67377 \times 10^{-27} kilograms$
Binding energy per nucleon:
Where $B.E.\rightarrow$ Binding Energy
Note: Higher binding energy per nucleon shows higher stability of the nucleus.
The difference between the total mass of individual nucleons (i.e. total number of proton and neutron) and actual mass of nucleus of that energy is called binding energy.$\Delta m = \left (P \times m_{P} + N \times m_{N} \right) - m_{actual} \qquad (1)$
$\Delta m \rightarrow$ Mass Defect
$P \rightarrow$ Number of Proton
$N \rightarrow$ Number of Neutron
$m_{actual} \rightarrow$ Actual mass of nucleus
$m_{P} \rightarrow$ Mass of a Proton
$m_{N} \rightarrow$ Mass of a Neutron
$Z \rightarrow $ Atomic Number
$A \rightarrow $ Atomic Mass Number
$ e \rightarrow $ Number of Electrons
The energy require to form or break a nucleous is called the binding energy of nucleous.$B.E= \Delta m \times c^{2} Joule$
The energy require to emit one nucleon from the nucleous is called binding energy per nucleon.$B.E. \: per \: nucleon = \frac{B.E.}{ Total \: No. \: of \: Nucleons}$