Schrodinger's equation for the complex conjugate waves function
Derivation:
The time dependent Schrodinger quation for the wave function function $psi(x,y,z,t)$ is
$-\frac{\hbar^{2}}{2m}\nabla^{2} \psi + V\psi=i\hbar\frac{\partial \psi}{\partial t} \qquad(1)$
Since wave function, $\psi$ is complex quantity i.e.
$\psi=\psi_{1}+i \: \psi_{2} \qquad(2)$
Where $\psi_{1}$ and $\psi_{2}$ are real functions of $x,y,z,t$. Substituting this form for $\psi$ in equation $(1)$, we get
$-\frac{\hbar^{2}}{2m}\nabla^{2} \left( \psi_{1}+i \: \psi_{2} \right) + V\left( \psi_{1}+i \: \psi_{2} \right)
\\ \qquad
= i\hbar\frac{\partial }{\partial t} \left( \psi_{1}+i \: \psi_{2} \right)$
Equation real and imaginary parts on either side of this equation, we obtain the following two equations:
$-\frac{\hbar^{2}}{2m}\nabla^{2} \psi_{1} + V\psi_{1}=-\hbar\frac{\partial \psi_{2}}{\partial t} \qquad(3)$
$-\frac{\hbar^{2}}{2m}\nabla^{2} \psi_{2} + V\psi_{2}=\hbar\frac{\partial \psi_{1}}{\partial t} \qquad(4)$
Mutiplying equation $(4)$ by $-i$ and adding it to equation $(3)$, we get
$-\frac{\hbar^{2}}{2m}\nabla^{2} \left( \psi_{1} - i \: \psi_{2} \right) + V\left( \psi_{1} - i \: \psi_{2} \right)
\\ \qquad
= -i\hbar\frac{\partial }{\partial t} \left( \psi_{1} - i \: \psi_{2} \right) \qquad(5)$
The complex conjugate of wave function $\psi^{*}$ is
$\psi^{*}=\psi^{*}_{1} - i \: \psi^{*}_{2} \qquad(6)$
Therefore, The equation $(5)$ can be written as
$-\frac{\hbar^{2}}{2m}\nabla^{2} \psi^{*} + V \psi^{*} =-i \hbar \frac{\partial \psi^{*}}{\partial t}$
This is the equation for complex conjugate wave function $\psi^{*}$.