Group velocity is equal to particle velocity
Prove that: Group velocity is equal to Particle Velocity
Solution:
We know that group velocity
$V_{g}=\frac{d\omega}{dk}$
$V_{g}=\frac{d(2\pi\nu )}{d(\frac{2\pi }{\lambda })} \qquad \left(k=\frac{2\pi}{\lambda} \right)$
$V_{g}=\frac{d\nu}{d(\frac{1}{\lambda })}$
$\frac{1}{V_{g}}=\frac{d( \frac{1}{\lambda })}{d\nu}\qquad(1)$
We know that the total energy of the particle is equal to the sum of kinetic energy and potential energy. i.e
$E=K+V$
Where
$K$ – kinetic energy
$V$ – Potential energy
$E=\frac{1}{2} mv^{2}+V$
$E-V=\frac{1}{2}\frac{(mv)^2}{m}$
$E-V=\frac{1}{2m }(mv)^2$
$2m(E-V)=(mv)^2$
$mv=\sqrt{2m(E-V)}$
According to de-Broglie wavelength-
$\lambda =\frac{h}{mv}$
$\lambda =\frac{h}{\sqrt{2m(E-V)}}$
$\frac{1}{\lambda} =\frac{\sqrt{2m(E-V)}}{h}\qquad(3)$
Now put the value of $\frac{1}{\lambda }$ in equation$(1)$
$\frac{1}{V_{g}} =\frac{d}{dv}[\frac{{2m(E-V)}^\tfrac{1}{2}}{h}]$
$\frac{1}{V_{g}} =\frac{d}{dv}[\frac{{2m(h\nu -V)}^\tfrac{1}{2}}{h}]$
$\frac{1}{V_{g}} =\frac{1}{2h}[{2m(h\nu -V)}]^{\tfrac{-1}{2}}{2m.h}$
$\frac{1}{V_{g}} =\frac{1}{2h}[{2m(E -V)}]^{\tfrac{-1}{2}}{2m.h} \qquad \left(\because E=h\nu \right) $
$\frac{1}{V_{g}} =\frac{m}{mv}$ {from equation $(2)$}
$V_{g}=V$
Thus, the above equation shows that group velocity is equal to particle velocity.
$V$ – Potential energy