Derivation of Planck's Radiation Law
Derivation:
Let $ N$ be the total number of Planck’s oscillators and $E$ be their total energy, then the
average energy per Planck’s oscillator is
$ \overline{E}=\frac{E_{N}}{N}
\qquad (1)$
Let there be $ N_{0}, N_{1} ,N_{2}
,N_{3},---N_{n}$ oscillator having energy $ E_{0}, E_{1}, E_{2}, -- E_{n}$
respectively.
According to Maxwell’s distribution, the number of oscillators in the $ n^{th}$ energy
state is related to the number of oscillators in the ground state by
$ N_{n}=N _{0} e^{\tfrac{-nh\nu }{kt} }\qquad (2)$
Where
$ n$ is a positive integer. So put $ n= 1,2,3,…….$. The above equation can be
written for different energy states. i.e.
$ N_{1}=
N _{0} e^{\tfrac{-h\nu }{kt} }$
$ N_{2}=
N _{0} e^{\tfrac{-2h\nu }{kt} }$
$ N_{3}=
N _{0} e^{\tfrac{-3h\nu }{kt} }$
$.............$
$.............$
So, the total number of Planck’s Oscillators –
$ N= N _{0} +N_{1}+N_{2}+N_{3}+.... N_{n}$
Let $ x = e^{\frac{-h\nu }{kt}} \qquad (4) $
Then $ N = N_{0}[1+x+x^{2}+x^{3}+...+ x^{n}]$
$ N = \frac{N_{0}}{1-x} \qquad(5)$ [ from Binomial theorem]
Now the total energy of oscillators –
From equation $(4)$ put $ x = e^{\tfrac{-h\nu }{kt}}$ in above equation. i.e
$ E_{N } = N_{0}h\nu (x+2x^{2}+3x^{3}+...+nx^{n}) $
$ E_{N } = N_{0}h\nu x(1+2x+3x^{2}+....)$
$ E_{N } = \frac{N_{0}h\nu x}{(1-x)^{2}} \qquad(6)$ (from Bionomical theorem)
Now substituting the value of $N$ from equation $ (5)$ and $ E_{n}$ from equation
$ (6)$ in equation $ (1)$ –
$ \overline{E}= \frac{\frac{N_{0}h\nu x}{(1-x)^{2}}}{\frac{N_{0}}{(1-x)}}$
$ \overline{E}= \frac{h\nu }{(\frac{1}{x}-1)}$
$ \overline{E}= \frac{h\nu }{e^{\tfrac{h\nu }{kt}}-1} \qquad(7)$
The
number of oscillators per unit volume in wavelength range to $ ( \lambda + d\lambda )$ is $\frac{8\pi }{\lambda ^{4}} d\lambda$.
The energy per unit volume $ (E_{\lambda }d\lambda )$ in the wavelength range to $( \lambda
+d\lambda ) $ is –
$ E_{\lambda}d\lambda = \frac{8\pi }{\lambda ^{4}}d\lambda \overline{E} \qquad(8)$
From equation $ (7)$ and $ (8)$ –
$ E_{\lambda}d\lambda = \frac{8\pi }{\lambda ^{4}}d\lambda \frac{h\nu }{(e^{\tfrac{h\nu}{kt}}-1)}$
$ E_{\lambda}d\lambda = \frac{8\pi hc}{\lambda ^{5}} \frac{d\lambda}{(e^{\tfrac{hc}{\lambda kt}}-1)}$
The above equation describes Planck’s radiation law and this law was able to thoroughly explain the black body radiation spectrum.
Wien’s Displacement law from Planck’s Radiation Law:
Planck’s radiation law gives the energy in wavelength region $ \lambda to \lambda +d\lambda $ as –
$ E_{\lambda}d \lambda = \frac{8\pi hc}{\lambda ^{5}}(\frac{1}{e^{\tfrac{hc}{\lambda kt}}-1})d\lambda \qquad(1)$
For shorter wavelength $ \lambda T$ will be small and hence
$ e^{\tfrac{hc}{\lambda kt}}> > 1$
Hence, for a small value of $\lambda T$ Planck’s formula reduces to -
$ E_{\lambda}d \lambda = \frac{8\pi hc}{\lambda ^{5}}(\frac{1}{e^{\tfrac{hc}{\lambda kt}}})
d\lambda$
$ E_{\lambda}d\lambda = \frac{8\pi hc}{\lambda ^{5}}e^{\tfrac{-hc}{\lambda kt}}d\lambda$
$E_{\lambda}d\lambda = A \lambda ^{-5} e^{\tfrac{-hc}{\lambda kt}}d\lambda$
Where $ A = 8\pi hc$
The above equation is Wien’s law of energy distribution verified by Planck
radiation law.
Rayleigh-Jeans law from Planck’s Radiation Law:
According to Planck’s radiation law –
$ E_{\lambda}.d\lambda = \frac{8\pi hc}{\lambda ^{5}}\frac{1 }{e^{\tfrac{hc}{\lambda
kt}}-1}.d\lambda$
For longer wavelength $ e^{\frac{hc}{\lambda kt}}$ is small and can be expanded as-
$ e^{\tfrac{hc}{\lambda kt}} = 1+\frac{hc}{\lambda kt}+\frac{1}{2!}(\frac{hc}{\lambda kt})^{2}+....$
Neglecting the higher-order term –
$ e^{\tfrac{hc}{\lambda kt}} = 1+\frac{hc}{\lambda kt}$
Hence for longer wavelength, Planck’s formula reduces to –
$ E_{\lambda}.d\lambda = \frac{8\pi kt}{\lambda ^{5}}[\frac{1}{1+\frac{hc}{\lambda kt}-1}]$
$ E_{\lambda}.d\lambda = \frac{8\pi kt}{\lambda ^{4}}.d\lambda$
This is Rayleigh Jean’s law verified by Planck Radiation Law.
$ N= N _{0} + N_{0} e^{\tfrac{-h\nu }{kt}}+ N_{0} e^{\tfrac{-2h\nu
}{kt}}+...+ N_{0}e^{\tfrac{-nh\nu }{kt}}$
$ N= N _{0}[1+e^{\tfrac{-h\nu }{kt}}+e^{\tfrac{-2h\nu }{kt}}+.... e^{\tfrac{-nh\nu }{kt}}] \qquad(3)$
$ E_{N} = E_{0}N_{0}+ E_{1}N_{1}+ E_{2}N_{2}+...+ E_{n}N_{n}$
$ E_{N } = 0.N_{0}+ h\nu N_{0} e^{\tfrac{-h\nu }{kt}}+...+nh\nu N_{0} e^{\tfrac{-nh\nu }{kt}}$
$ E_{N } = N_{0}h\nu (e^{\tfrac{-h\nu }{kt}}+2e^{\tfrac{-2h\nu }{kt}}+...+ ne^{\tfrac{-nh\nu }{kt}})$